Физика плазмы. Основы физики плазмы

Времена, когда плазма ассоциировалась у нас с чем-то нереальным, непонятным, фантастическим, уже давно прошли. В наши дни это понятие активно используется. Плазму применяют в промышленности. Наиболее масштабно ее используют в светотехнике. Пример – газоразрядные лампы, освещающие улицы. Но и в лампах дневного света она присутствует. Она есть и в электрической сварке. Ведь дуга сварки – это плазма, сгенерированная плазмотроном. Можно привести и множество других примеров.

применение плазмы физика

Физика плазмы - важный раздел науки. Поэтому стоит разобраться с основными понятиями, относящимися к ней. Этому и посвящена наша статья.

Определение и виды плазмы

Что же такое плазма? Определение в физике дается вполне четкое. Плазменным называют такое состояние вещества, когда в последнем имеется значительное (соизмеримое с полным числом частиц) число заряженных частиц (носителей), способных более или менее свободно перемещаться внутри вещества. Можно выделить следующие основные виды плазмы в физике. Если носители принадлежат к частицам одного сорта (а частицы противоположного знака заряда, нейтрализующие систему, не имеют свободы перемещения), ее называют однокомпонентной. В противоположном случае она является - двух- или многокомпонентной.

Особенности плазмы

физика низкотемпературной плазмы

Итак, мы вкратце охарактеризовали понятие о плазме. Физика - наука точная, поэтому без определений здесь не обойтись. Расскажем теперь об основных особенностях этого состояния вещества.

Свойства плазмы в физике следующие. Прежде всего, в этом состоянии под действием уже малых электромагнитных сил возникает движение носителей - ток, который протекает таким образом и до тех пор, пока эти силы не исчезнут благодаря экранировке их источников. Поэтому плазма в конце концов переходит в состояние, когда она квазинейтральна. Другими словами, ее объемы, большие некоторой микроскопической величины, имеют нулевой заряд. Вторая особенность плазмы связана с дальнодействующим характером кулоновских и амперовских сил. Она состоит в том, что движения в этом состоянии, как правило, имеют коллективный характер, вовлекая большое число заряженных частиц. Таковы основные свойства плазмы в физике. Их полезно было бы запомнить.

Обе эти особенности ведут к тому, что физика плазмы необычайно богата и разнообразна. Наиболее ярким ее проявлением служит легкость возникновения различного рода неустойчивостей. Они являются серьезным препятствием, затрудняющим практическое применение плазмы. Физика - эта наука, которая постоянно развивается. Поэтому можно надеяться, что со временем эти препятствия будут устранены.

Плазма в жидкостях

основы физики плазмы

Переходя к конкретным примерам структур, начнем с рассмотрения плазменных подсистем в конденсированном веществе. Среди жидкостей следует прежде всего назвать жидкие металлы - пример, которому отвечает плазменная подсистема - однокомпонентная плазма носителей-электронов. Строго говоря, к интересующему нас разряду следовало бы отнести и жидкости-электролиты, в которых имеются носители - ионы обоих знаков. Однако по разным причинам электролиты не относят к данному разряду. Одна из них состоит в том, что в электролите нет легких, подвижных носителей, таких как электроны. Поэтому указанные выше свойства плазмы выражены существенно слабее.

Плазма в кристаллах

Плазма в кристаллах носит специальное название - плазма твердого тела. В ионных кристаллах хотя и имеются заряды, но они неподвижны. Поэтому плазмы там нет. В металлах же - это электроны проводимости, составляющие однокомпонентную плазму. Ее заряд компенсируется зарядом неподвижных (точнее говоря, неспособных смещаться на большие расстояния) ионов.

Плазма в полупроводниках

Рассматривая основы физики плазмы, необходимо отметить, что в полупроводниках ситуация более разнообразная. Вкратце охарактеризуем ее. Однокомпонентная плазма в этих веществах может возникнуть, если ввести в них соответствующие примеси. Если примеси легко отдают электроны (доноры), то возникают носители n-типа - электроны. Если же примеси, напротив, легко отбирают электроны (акцепторы), то возникают носители р-типа - дырки (пустые места в распределении электронов), которые ведут себя как частицы с положительным зарядом. Двухкомпонентная же плазма, образованная электронами и дырками, возникает в полупроводниках еще более простым образом. Например, она появляется под действием световой накачки, забрасывающей электроны из валентной зоны в зону проводимости. Отметим, что при определенных условиях электроны и дырки, притягивающиеся друг к другу, могут образовать связанное состояние, подобное атому водорода, - экситон, а если накачка интенсивна, и плотность экситонов велика, то они сливаются вместе и образуют каплю электронно-дырочной жидкости. Иногда такое состояние считают новым состоянием вещества.

Ионизация газа

Приведенные примеры относились к особым случаям плазменного состояния, а плазмой в чистом виде называется ионизованный газ. К его ионизации могут приводить многие факторы: электрическое поле (газовый разряд, гроза), световой поток (фотоионизация), быстрые частицы (излучение радиоактивных источников, космические лучи, которые и были открыты по возрастанию степени ионизации с высотой). Однако главным фактором является нагрев газа (термическая ионизация). В этом случае к отрыву электрона от атома ведет соударение с последним другой частицы газа, имеющей достаточную кинетическую энергию за счет высокой температуры.

Высокотемпературная и низкотемпературная плазма

физика плазмы

Физика низкотемпературной плазмы - то, с чем мы соприкасаемся практически каждый день. Примерами такого состояния могут служить пламя, вещество в газовом разряде и молнии, различные виды холодной космической плазмы (ионо- и магнитосферы планет и звезд), рабочее вещество в различных технических устройствах (МГД-генераторах, плазменных двигателях, горелках и т. п.). Примеры высокотемпературной плазмы - вещество звезд на всех этапах их эволюции, кроме раннего детства и старости, рабочее вещество в установках по управляемому термоядерному синтезу (токамаки, лазерные устройства, пучковые устройства и др.).

Четвертое состояние вещества

Полтора века назад многие физики и химики полагали, что материя состоит только из молекул и атомов. Они объединяются в комбинации либо совсем неупорядоченные, либо более-менее упорядоченные. Считалось, что существует три фазы – газообразная, жидкая и твердая. Вещества принимают их под влиянием внешних условий.

свойства плазмы в физике

Однако в настоящее время можно говорить о том, что имеется 4 состояния вещества. Именно плазму можно считать новым, четвертым. Ее отличие от конденсированного (твердого и жидкого) состояний заключается в том, что она, как и газ, не имеет не только сдвиговой упругости, но и фиксированного собственного объема. С другой стороны, плазму роднит с конденсированным состоянием наличие ближнего порядка, т. е. корреляция положений и состава частиц, соседних с данным зарядом плазмы. В этом случае такая корреляция порождается не межмолекулярными, а кулоновскими силами: данный заряд отталкивает от себя одноименные с ним самим заряды и притягивает разноименные.

понятие о плазме физика

Физика плазмы была нами вкратце рассмотрена. Эта тема достаточно объемна, поэтому можно говорить лишь о том, что мы раскрыли ее основы. Физика плазмы, безусловно, заслуживает дальнейшего рассмотрения.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.
Новости и общество
Новости и общество
Новости и общество