Термодинамические процессы. Анализ термодинамических процессов. Термодинамические процессы идеальных газов

В этой статье мы рассмотрим термодинамические процессы. Ознакомимся с их разновидностями и качественными характеристиками, а также изучим явление круговых процессов, обладающих в начальной и конечной точках одинаковыми параметрами.

Введение

Термодинамическими процессами называют явления, при которых происходит макроскопическое изменение термодинамики всей системе. Наличие разницы между исходным и конечным состоянием носит название элементарного процесса, но при этом необходимо, чтобы это различие было бесконечно малым. Область пространства, в границах которого протекает это явление, именуется рабочим телом.

По типу устойчивость можно различать равновесную и неравновесную. Равновесный механизм представляет собой процесс, в ходе которого все типы состояния, сквозь которые протекает система, относятся к равновесному состоянию. Реализация таких процессов происходит в случае, когда изменение протекает довольно медленно, или, другими словами, явление носит квазистатический характер.

Явление теплового типа можно разделить на обратимый и необратимый термодинамический процессы. К обратимым причисляют механизмы, при которых реализуется возможность проводить процесс в противоположное направление, при помощи одних и тех же промежуточных состояний.

Адиабатическая теплопередача

Адиабатическим путем теплообмена, является термодинамический процесс, происходящий в масштабах макромира. Еще одной характеристикой является отсутствие обмена теплом с пространством вокруг.

Широкомасштабные исследования в области данного процесса уходят стартом развития в начало восемнадцатого века.

Адиабатические типы процессов представляю собой частный случай политропной формы. Это обусловлено тем, что в таком виде газовая теплоемкость равняется нулю, а значит, постоянная величина. Обратить подобный процесс можно лишь при наличии точки равновесия всех моментов во времени. Изменения в показателе энтропии не наблюдаются в таком случае либо протекают слишком медленно. Существует ряд авторов, признающих адиабатические процессы только в обратимых.

Термодинамический процесс газа идеального типа в форме адиабатического явления описывает уравнение Пуассона.

Изохорная система

Механизм изохорического типа – это термодинамический процесс, основанный на постоянной величине объема. Его можно наблюдать в газах или жидкостях, которые достаточно нагревали в сосуде, с неизменным объемом.

Термодинамический процесс идеального газа в изохорической форме, позволяет молекулам сохранять соответствие пропорций по отношению к температуре. Это обуславливается законом Шарля. Для реальных газов данная догма науки не применима.

Изобарная система

Изобарная система представлена в виде термодинамического процесса, который происходит при наличии постоянного давления снаружи. Протекание И.п. в достаточно медленном темпе, позволяющем давлению в пределах системы считаться постоянной и соответствующему показателю внешнего давления может считаться обратимым. Также к таким явлениям можно отнести случай, в котором изменение в выше упомянутом процессе, протекают с маленькой скоростью, позволяющей считать давление постоянным.

Осуществить И.п. можно в системе, подведенной (или отведенной) к теплоте dQ. Для этого необходимо произвести расширение работы Pdv и изменение внутреннего типа энергии dU, T.

  • e.dQ, = Pdv+dU= TdS.

Изменения в уровне энтропии – dS, T – абсолютное значение температуры.

Термодинамические процессы идеальных газов в изобарной системе обуславливают наличие пропорциональности объема с температурой. Реальные газы определенное количество теплоты израсходует для внесения изменений в средний тип энергии. Работа такого явление равна показателю произведения давления извне, на изменения в объеме.

Изотермическое явление

Одним из основных термодинамических процессов является его изотермическая форма. Он происходит в физических системах, с постоянным показателем температуры.

Для реализации данного явления систему, как правило, переносят в термостат, с огромным показателем теплопроводности. Взаимный обмен тепла протекает с достаточной скоростью, чтобы обогнать скорость протекания самого процесса. Уровень температуры системы почти не имеет отличий от показателей термостата.

Осуществить процесс изотермической природы также можно с использованием тепловых стоков и (или) источников, проводя контроль постоянства температуры, используя термометры. Одним из самых распространенных примеров такого явления служит кипение жидкостей в условиях постоянного давления.

Изоэнтропийное явление

Изоэнтропийная форма тепловых процессов протекает в условиях постоянной величины энтропии. Механизмы тепловой природы можно получить, используя равенство Клаузиуса для обратимых процессов.

Только обратимые адиабатические процессы можно называть изоэнтропийными. Неравенство Клаузиуса утверждает, что необратимые типы тепловых явлений сюда относиться не могут. Однако постоянство энтропии можно наблюдать и при необратимом тепловом явлении, если работа в термодинамическом процессе над энтропией производится так, что она незамедлительно удаляется. Глядя на термодинамические диаграммы, линии, отображающие изоэнтропийные процессы, можно именовать как адиабаты или изоэнтропы. Чаще прибегают к первому названию, что вызвано отсутствием возможности корректно изображать линии на диаграмме, характеризующейпроцесс необратимого характера. Объяснение и дальнейшая эксплуатация изоэнтропийных процессов имеют огромное значение, так как часто применяется в достижении целей, практическом и теоретическом знании.

Изоэнтальпийный тип процесса

Изоэнтальпийный процесс – тепловое явление, наблюдаемое при наличии энтальпии в постоянной величине. Расчеты ее показателя делаются благодаря формуле: dH = dU + d(pV).

Энтальпией называют параметр, при помощи которого можно охарактеризовать систему, в которой изменения при возврате в обратное состояние самой системы не наблюдаются и, соответственно, равняются нулю.

Изоэнтальпийное явление теплообмена может на примере проявлять себя в термодинамическом процессе газов. Когда молекулы, например этана или бутана, «протискиваются» сквозь перегородку с пористым строением, а теплообмен газа с теплом вокруг не наблюдается. Такое можно наблюдать в эффекте Джоуля-Томсона, применяемого в процессе получения сверхнизких показателей температуры. Изоэнтальпийные процессы являются ценными, в силу того, что дают возможность понижать температуру в рамках среды, не тратя для этого энергию.

Политропная форма

Характеристикой политропного процесса является его возможность изменять физические параметры системы, но оставлять показатель теплоемкости (C) в постоянной величине. Диаграммы, отображающие термодинамические процессы в такой форме, именуются политропными. Один из самых простых примеров обратимости отражается в идеальных газах и определяется при помощи уравнения: pVn= const. P – показатели давления, V – объемная величина газа.

«Кольцо» процесса

Термодинамические системы и процессы могут образовывать циклы, которые имеют круговую форму. Они всегда имеют идентичные показатели в начальном и конечном параметре, оценивающем состояние тела. К таким качественным характеристикам можно отнести наблюдение за показателями давления, энтропии, температуры и объема.

Термодинамический цикл находит себя в выражении модели процесса, протекающего в настоящих тепловых механизмах, превращающих тепло в работу механического типа.

Рабочее тело входит в состав компонентов каждой такой машины.

Обратимый термодинамический процесс представлен в виде цикла, который имеет пути проведения как в направлении прямо, так и обратно. Его положение залегает в системе замкнутого типа. Суммарный коэффициент системной энтропии при повторе каждого цикла не изменяется. У механизма, в котором теплопередача происходит только между нагревательным или холодильным аппаратом и рабочим телом, обратимость возможно только при цикле Карно.

Существует ряд других циклических явлений, которые могут обращаться лишь при достижении введения дополнительного резервуара с теплом. Такие источники называют регенераторами.

Анализ термодинамических процессов, в ходе которых происходит регенерация, показывает нам, что все они общие по циклу Рейтлингера. Доказано на ряде расчетов и экспериментов, что обратимый цикл обладает наибольшей степенью эффективности.

Комментарии