Фурье, преобразование. Быстрое преобразование Фурье. Дискретное преобразование Фурье

Преобразование Фурье – преобразование, сопоставляющее функции некой вещественной переменной. Данная операция выполняется каждый раз, когда мы воспринимаем различные звуки. Ухо производит автоматическое «вычисление», выполнить которое наше сознание способно только после изучения соответствующего раздела высшей математики. Орган слуха у человека строит преобразование, в результате которого звук (колебательное движение условных частиц в упругой среде, которые распространяются в волновом виде в твердой, жидкой или газообразной среде) предоставляется в виде спектра последовательно идущих значений уровня громкости тонов разной высоты. После этого мозг превращает данную информацию в привычный всем звук.

Фурье преобразование

Математическое преобразование Фурье

Преобразование звуковых волн или других колебательных процессов (от светового излучения и океанского прилива и до циклов звездной или солнечной активности) можно проводить и с помощью математических методов. Так, пользуясь данными приемами, можно разложить функции, представив колебательные процессы набором синусоидальных составляющих, то есть волнообразных кривых, которые переходят от минимума к максимуму, затем снова к минимуму, подобно морской волне. Преобразование Фурье – преобразование, функция которого описывает фазу или амплитуду каждой синусоиды, отвечающей определенной частоте. Фаза представляет собой начальную точку кривой, а амплитуда – ее высоту.

Преобразование Фурье (примеры приведены на фото) является весьма мощным инструментарием, который применяется в разнообразных областях науки. В отдельных случаях он используется в качестве средства решения довольно сложных уравнений, которые описывают динамические процессы, возникающие под воздействием световой, тепловой или электрической энергии. В иных случаях он позволяет определять регулярные составляющие в сложных колебательных сигналах, благодаря этому можно верно интерпретировать различные экспериментальные наблюдения в химии, медицине и астрономии.

дискретное преобразование Фурье

Историческая справка

Первым человеком, применившим данный метод, стал французский математик Жан Батист Фурье. Преобразование, названное впоследствии его именем, изначально использовалось для описания механизма теплопроводности. Фурье всю свою сознательную жизнь занимался изучением свойств тепла. Он внес огромный вклад в математическую теорию определения корней алгебраических уравнений. Фурье являлся профессором анализа в Политехнической школе, секретарем Института египтологии, состоял на императорской службе, на которой отличился во время строительства дороги на Турин (под его руководством было осушено более 80 тысяч квадратных километров малярийных болот). Однако вся эта активная деятельность не помешала ученому заниматься математическим анализом. В 1802 году им было выведено уравнение, которое описывает распространение тепла в твердых телах. В 1807 году ученый открыл метод решения данного уравнения, которое и получило название "преобразование Фурье".

Анализ теплопроводности

Ученый применил математический метод для описания механизма теплопроводности. Удобным примером, в котором не возникает трудностей с вычислением, является распространение тепловой энергии по железному кольцу, погруженному одной частью в огонь. Для проведения опытов Фурье накалял докрасна часть этого кольца и закапывал его в мелкий песок. После этого проводил замеры температуры на противоположной его части. Первоначально распределение тепла является нерегулярным: часть кольца - холодная, а другая - горячая, между данными зонами можно наблюдать резкий градиент температуры. Однако в процессе распространения тепла по всей поверхности металла она становится более равномерной. Так, вскоре данный процесс приобретает вид синусоиды. Сначала график плавно нарастает и так же плавно убывает, точно по законам изменения функции косинуса или синуса. Волна постепенно выравнивается и в результате температура становится одинаковой на всей поверхности кольца.

двумерное преобразование Фурье

Автор данного метода предположил, что начальное нерегулярное распределение вполне можно разложить на ряд элементарных синусоид. Каждая из них будет иметь свою фазу (первоначальное положение) и свой температурный максимум. При этом каждая такая компонента изменяется от минимума к максимуму и обратно на полном обороте вокруг кольца целое число раз. Составляющая, имеющая один период, была названа основной гармоникой, а значение с двумя и более периодами – второй и так далее. Так, математическая функция, которая описывает температурный максимум, фазу или позицию называет преобразованием Фурье от функции распределения. Ученый свел единую составляющую, которая трудно поддается математическому описанию, к удобному в обращении инструменту – рядам косинуса и синуса, в сумме дающим исходное распределение.

Суть анализа

Применяя данный анализ к преобразованию распространения тепла по твердому предмету, имеющему кольцевую форму, математик рассудил, что повышение периодов синусоидальной компоненты приведет к ее быстрому затуханию. Это хорошо прослеживается на основной и второй гармониках. В последней температура дважды достигает максимального и минимального значений на одном проходе, а в первой - только один раз. Получается, что расстояние, преодолеваемое теплом во второй гармонике, будет вдвое меньше, чем в основной. Кроме того, градиент во второй также будет вдвое круче, чем у первой. Следовательно, поскольку более интенсивный тепловой поток проходит расстояние вдове меньшее, то данная гармоника будет затухать в четыре раза быстрее, чем основная, как функция времени. В последующих данный процесс будет проходить еще быстрее. Математик считал, что данный метод позволяет рассчитать процесс первоначального распределения температуры во времени.

Вызов современникам

Алгоритм преобразования Фурье стал вызовом теоретическим основам математики того времени. В начале девятнадцатого века большинство выдающихся ученых, в том числе и Лагранж, Лаплас, Пуассон, Лежандр и Био, не приняли его утверждение о том, что начальное распределение температуры раскладывается на составляющие в виде основной гармоники и более высокочастотные. Однако академия наук не могла проигнорировать результаты, полученные математиком, и удостоила его премии за теорию законов теплопроводности, а также проведение сравнения ее с физическими экспериментами. В подходе Фурье главное возражение вызывал тот факт, что разрывная функция представлена суммой нескольких синусоидальных функций, которые являются непрерывными. Ведь они описывают разрывающиеся прямые и кривые линии. Современники ученого никогда не сталкивались с подобной ситуацией, когда разрывные функции описывались комбинацией непрерывных, таких как квадратичная, линейная, синусоида либо экспонента. В том случае, если математик был прав в своих утверждениях, то сумма бесконечного ряда тригонометрической функции должна сводиться к точной ступенчатой. В то время подобное утверждение казалось абсурдным. Однако, несмотря на сомнения, некоторые исследователи (например Клод Навье, Софи Жермен) расширили сферу исследований и вывели их за пределы анализа распределения тепловой энергии. А математики тем временем продолжали мучиться вопросом о том, может ли сумма нескольких синусоидальных функций сводиться к точному представлению разрывной.

оконное преобразование фурье

200-летняя история

Данная теория развивалась на протяжении двух столетий, на сегодняшний день она окончательно сформировалась. С ее помощью пространственные или временные функции разбиваются на синусоидальные составляющие, которые имеют свою частоту, фазу и амплитуду. Данное преобразование получается двумя разными математическими методами. Первый из них применяется в том случае, когда исходная функция является непрерывной, а второй – в том случае, когда она представлена множеством дискретных отдельных изменений. Если выражение получено из значений, которые определены дискретными интервалами, то его можно разбить на несколько синусоидальных выражений с дискретными частотами – от наиболее низкой и далее вдвое, втрое и так далее выше основной. Такую сумму принято называть рядом Фурье. Если начальное выражение задано значением для каждого действительного числа, то его можно разложить на несколько синусоидальных всех возможных частот. Его принято называть интегралом Фурье, а решение подразумевает под собой интегральные преобразования функции. Независимо от способа получения преобразования, для каждой частоты следует указывать два числа: амплитуду и частоту. Данные значения выражаются в виде единого комплексного числа. Теория выражений комплексных переменных совместно с преобразованием Фурье позволила проводить вычисления при конструировании различных электрических цепей, анализ механических колебаний, изучение механизма распространения волн и другое.

Преобразование Фурье сегодня

В наши дни изучение данного процесса в основном сводится к нахождению эффективных методов перехода от функции к ее преобразованному виду и обратно. Такое решение называется прямое и обратное преобразование Фурье. Что это значит? Для того чтобы определить интеграл и произвести прямое преобразование Фурье, можно воспользоваться математическими методами, а можно и аналитическими. Несмотря на то что при их использовании на практике возникают определенные трудности, большинство интегралов уже найдены и внесены в математические справочники. С помощью численных методов можно рассчитывать выражения, форма которых основывается на экспериментальных данных, либо функции, интегралы которых в таблицах отсутствуют и их сложно представить в аналитической форме.

До появления вычислительной техники расчеты таких преобразований были весьма утомительными, они требовали ручного выполнения большого количества арифметических операций, которые зависели от числа точек, описывающих волновую функцию. Для облегчения расчетов сегодня существуют специальные программы, позволившие реализовать новые аналитические методы. Так, в 1965 году Джеймс Кули и Джон Тьюки создали программное обеспечение, получившее известность как «быстрое преобразование Фурье». Оно позволяет экономить время проведения расчетов за счет уменьшения числа умножений при анализе кривой. Метод «быстрое преобразование Фурье» основан на делении кривой на большое число равномерных выборочных значений. Соответственно количество умножений снижается вдвое при таком же снижении количества точек.

свойства преобразования Фурье

Применение преобразования Фурье

Данный процесс используется в различных областях науки: в теории чисел, физике, обработке сигналов, комбинаторике, теории вероятности, криптографии, статистике, океанологии, оптике, акустике, геометрии и других. Богатые возможности его применения основаны на ряде полезных особенностей, которые получили название "свойства преобразования Фурье". Рассмотрим их.

1. Преобразование функции является линейным оператором и с соответствующей нормализацией является унитарным. Данное свойство известно как теорема Парсеваля, или в общем случае теорема Планшереля, или дуализм Понтрягина.

2. Преобразование является обратимым. Причем обратный результат имеет практически аналогичную форму, как и при прямом решении.

3. Синусоидальные базовые выражения являются собственными дифференцированными функциями. Это означает, что такое представление изменяет линейные уравнения с постоянным коэффициентом в обычные алгебраические.

4. Согласно теореме «свертки», данный процесс превращает сложную операцию в элементарное умножение.

5. Дискретное преобразование Фурье может быть быстро рассчитано на компьютере с использованием «быстрого» метода.

прямое преобразование Фурье

Разновидности преобразования Фурье

1. Наиболее часто данный термин используется для обозначения непрерывного преобразования, предоставляющего любое квадратично интегрируемое выражение в виде суммы комплексных показательных выражений с конкретными угловыми частотами и амплитудами. Данный вид имеет несколько различных форм, которые могут отличаться постоянными коэффициентами. Непрерывный метод включает в себя таблицу преобразований, которую можно найти в математических справочниках. Обобщенным случаем является дробное преобразование, посредством которого данный процесс можно возвести в необходимую вещественную степень.

2. Непрерывный способ является обобщением ранней методики рядов Фурье, определенных для различных периодических функций или выражений, которые существуют в ограниченной области и представляют их как ряды синусоид.

3. Дискретное преобразование Фурье. Этот метод используется в компьютерной технике для проведения научных расчетов и для цифровой обработки сигналов. Для проведения данного вида расчетов требуется иметь функции, определяющие на дискретном множестве отдельные точки, периодические или ограниченные области вместо непрерывных интегралов Фурье. Преобразование сигнала в таком случае представлено как сумма синусоид. При этом использование «быстрого» метода позволяет применять дискретные решения для любых практических задач.

4. Оконное преобразование Фурье является обобщенным видом классического метода. В отличие от стандартного решения, когда используется спектр сигнала, который взят в полном диапазоне существования данной переменной, здесь особый интерес представляет всего лишь локальное распределение частоты при условии сохранения изначальной переменной (время).

5. Двумерное преобразование Фурье. Данный метод используется для работы с двумерными массивами данных. В таком случае сначала преобразование производится в одном направлении, а затем - в другом.

Фурье преобразование сигнала

Заключение

Сегодня метод Фурье прочно закрепился в различных областях науки. Например, в 1962 году была открыта форма двойной ДНК-спирали с использованием анализа Фурье в сочетании с дифракцией рентгеновских лучей. Последние фокусировались на кристаллах волокон ДНК, в результате изображение, которое получалось при дифракции излучения, фиксировались на пленке. Данная картинка дала информацию о значении амплитуды при использовании преобразования Фурье к данной кристаллической структуре. Данные о фазе получили путем сопоставления дифракционной карты ДНК с картами, которые получены при анализе подобных химических структур. В результате биологи восстановили кристаллическую структуру - исходную функцию.

Преобразования Фурье играют огромную роль в изучении космического пространства, физики полупроводниковых материалов и плазмы, микроволновой акустике, океанографии, радиолокации, сейсмологии и медицинских обследованиях.

Статья закончилась. Вопросы остались?
Комментарии 0
Подписаться
Я хочу получать
Правила публикации
Редактирование комментария возможно в течении пяти минут после его создания, либо до момента появления ответа на данный комментарий.
Новости и общество
Новости и общество
Новости и общество